Targeted Exon Skipping to Address “Leaky” Mutations in the Dystrophin Gene
نویسندگان
چکیده
Protein-truncating mutations in the dystrophin gene lead to the progressive muscle wasting disorder Duchenne muscular dystrophy, whereas in-frame deletions typically manifest as the milder allelic condition, Becker muscular dystrophy. Antisense oligomer-induced exon skipping can modify dystrophin gene expression so that a disease-associated dystrophin pre-mRNA is processed into a Becker muscular dystrophy-like mature transcript. Despite genomic deletions that may encompass hundreds of kilobases of the gene, some dystrophin mutations appear "leaky", and low levels of high molecular weight, and presumably semi-functional, dystrophin are produced. A likely causative mechanism is endogenous exon skipping, and Duchenne individuals with higher baseline levels of dystrophin may respond more efficiently to the administration of splice-switching antisense oligomers. We optimized excision of exons 8 and 9 in normal human myoblasts, and evaluated several oligomers in cells from eight Duchenne muscular dystrophy patients with deletions in a known "leaky" region of the dystrophin gene. Inter-patient variation in response to antisense oligomer induced skipping in vitro appeared minimal. We describe oligomers targeting exon 8, that unequivocally increase dystrophin above baseline in vitro, and propose that patients with leaky mutations are ideally suited for participation in antisense oligomer mediated splice-switching clinical studies.Molecular Therapy - Nucleic Acids (2012) 1, e48; doi:10.1038/mtna.2012.40; published online 16 October 2012.
منابع مشابه
Targeted Exon Skipping to Correct Exon Duplications in the Dystrophin Gene
Duchenne muscular dystrophy is a severe muscle-wasting disease caused by mutations in the dystrophin gene that ablate functional protein expression. Although exonic deletions are the most common Duchenne muscular dystrophy lesion, duplications account for 10-15% of reported disease-causing mutations, and exon 2 is the most commonly duplicated exon. Here, we describe the in vitro evaluation of p...
متن کاملMultiple exon skipping strategies to by-pass dystrophin mutations
Manipulation of dystrophin pre-mRNA processing offers the potential to overcome mutations in the dystrophin gene that would otherwise lead to Duchenne muscular dystrophy. Dystrophin mutations will require the removal of one or more exons to restore the reading frame and in some cases, multiple exon skipping strategies exist to restore dystrophin expression. However, for some small intra-exonic ...
متن کاملAntisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis ...
متن کاملExon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients?
INTRODUCTION Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, is caused by mutations of the dystrophin gene. Removal of an exon or of multiple exons using antisense molecules has been demonstrated to allow synthesis of truncated 'Becker muscular dystrophy-like' dystrophin. AREAS COVERED Approximately 15% of DMD cases are caused by a nonsense mutation. Al...
متن کاملCorrection of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases
Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc fing...
متن کامل